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Abstract —The planar-circuit approach to the analysis and design of
microwave integrated circuits (MIC’s), with specific reference to microstrip
circuits, is reviewed. The planar approach overcomes the limitations inher-
ent to the more conventional transmission-line approach. As the operating
frequency is increased and/or low-impedence levels are required, in fact,
the transverse dimensions of the circuit elements become comparable with
the wavelength and/or the longitudinal dimensions. In such cases, one-
dimensional analyses give inaccurate or even erroneous results.

The analysis of planar elements is formulated in terms of an N-port
circuit and results in a generalized impedance-matrix description. Analysis
techniques for simple geometries, such as the resonant mode expansion,
and for more complicated planar configurations, such as the segmentation
method, are discussed along with planar models for accounting for fringing
fields effects and radiation loss.

1. INTRODUCTION

S MICROWAVE TECHNOLOGY evolves toward

the use of higher frequencies and more sophisticated
circuits and components, a considerable theoretical effort
is required in order to improve the characterization and
modeling of microwave structures. This is the basis for
reliable computer-aided design (CAD) techniques.

In the setup of CAD techniques, one has to compromise
between accuracy and simplicity. Exact analyses are often
impractical because of the exceedingly high computer time
required. From this viewpoint, the planar-circuit approach
is a very powerful technique, which has been basically
developed for the analysis of microstrip circuits, but can be
extended to other microwave circuit configurations, such as
reduced-height waveguide, stripline, suspended microstrip,
etc.

Though the planar circuit is an approximate model of
microstrip components, it constitutes a substantial im-
provement over conventional transmission-line models,
providing accurate descriptions of their performances. On
the other hand, planar-circuit models are simple enough to
keep computer analyses reasonably inexpensive.

It is the scope of this paper to review the theoretical
basis of the planar-circuit approach and to stress its suit-
ability to the characterization, modeling, and design of
two-dimensional microwave structures, with specific refer-
ence to microstrip circuits. This paper is not intended to
provide details on planar-circuit analysis and design, which
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can be found in the referenced papers and ‘overview books
[1]-[3], but to illustrate the main features of the planar
approach in contrast with the more conventional transmis-
sion-line approach.

The concept and definition of planar circuits are intro-
duced in the next section, and the advantages of such an
approach are briefly described. Starting from Maxwell’s
equations, the theoretical bases for the analysis of planar
microwave components in terms of a two-dimensional cir-
cuit model are assessed in Section III. The terminal de-
scription of planar circuit is derived in Section IV; this is
the basis for a brief discussion on the filtering properties
and lumped-element equivalent circuits of planar elements.
Once the terminal description of a single planar element
has been obtained, the techniques mentioned in Section V,
such as the segmentation method, can be applied to the
analysis of more complicated planar configurations. The
techniques for modeling a microstrip component such as a
planar circuit, so as to account for effects of fringe fields
and radiation loss, are discussed in Section VI. Finally, in
order to describe the effects of planarity in microstrip
circuits, a simple stub structure is taken as an example and
its behavior illustrated in some detail in Section VIIL.

II. THE PLANAR CIRCUIT

The concept of a planar circuit was introduced by Okoshi
and Miyoshi [4] as an approach to the analysis of micro-
wave integrated circuits (MIC’s). Depending on the num-
ber of dimensions which are comparable with the operating
wavelength, conventional circuit elements can be classified
into three categories: zero-dimensional (lumped), one-
dimensional (uniform transmission lines), and three-dimen-
sional (waveguides). The fourth category is represented by
two-dimensional or planar circuits (Fig. 1). A planar circuit
is defined as an electrical circuit having two dimensions
comparable with the wavelength, while the third dimension
is a negligible fraction of the wavelength. Strictly speaking,
a distinction should be made between a microwave planar
element and a planar circuit, the latter being the mathe-
matical model, phrased in terms of voltage and current, of
the former; in some instances throughout this paper, how-
ever, the two terms can be used indistinctly.

As will be shown in the next section, a two-dimensional
circuit theory can be developed for planar components by
extending to the two-dimensional case the concepts of
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0 - DIMENSIONAL Vo= 2l
I

LUMPED ELEMENT

1 - DIMENSIONAL dv/dx = -Z1

TRANSMISSION LINE dl/dx = =YV

@ 2 - DIMENSIONAL o= =71
PLANAR CIRCUIT 9= Yy

3 - DIMENSIONAL IxE = -jupH

WAVEGUIDE IxH = jucE

Fig 1. Classification of electrical components.

voltage and current usually defined in transmission-line
theory.

The planar approach can be used to characterize a
number of MIC components, basically in stripline or mi-
crostrip configuration, which typically have one dimension,
the substrate thickness, much smaller than the operating
wavelength. Our attention will be focused on microstrip
circuits, which presently play a major role in the area of
MIC’s.

With reference to a microstrip component, it should be
observed that it can be only approximately considered as a
planar circuit, as the electromagnetic (EM) field is not
entirely confined to the substrate region but, particularly
near the edges of the metallization, extends into air outside

the dielectric substrate. In other words, the presence of*

stray fields makes the planar-circuit concept not rigorously
applicable to microstrip components. Nonetheless, as dis-
cussed in Section VI, provided suitable modifications in
terms of effective parameters are made, planar models
provide accurate enough characterizations of microstrip
circuits and components.

The planar-circuit model is intermediate between trans-
mission-line and full-wave three-dimensional models. In
some respects, it combines advantages of both approaches.
On the one hand, with respect to the usual transmission-line
description of microstrip circuits, the planar description is
far more accurate, while, on the other hand, it is much
more simple and computationally affordable than a full-
wave description. .

The advantages associated with the planar-circuit ap-
proach can be summarized as follows.

1) The planar-circuit approach provides accurate de-
scriptions of microstrip components and discontinuities.
As the operating frequency is increased and low-impedance
values are required, the performance of microstrip circuits
designed on a transmission-line basis deteriorates because
of unwanted reactances associated with discontinuities.
The EM field cannot any longer be assumed to have a
uniform distribution in the transverse direction so that a
planar approach is required to obtain accurate characteri-
zations of the circuit performances.

2) New classes of components can be analyzed and
designed using the planar-circuit approach. The wider de-
gree of freedom of planar elements can be used to obtain
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specific performances and to overcome the limitation in-

herent to the one-dimensional approach. Several new com-

ponents have been designed which utilize the planar con-

cept, such as 3-dB hybrid circuits [5], bias filter elements
[6], coupled-mode filters [7], in-phase 3-dB power dividers

[8], etc.; circular polarization in microstrip antennas is

obtained exciting two degenerate orthogonal modes in a

planar structure [9].

3) Planar circuits are simpler to analyze than three-
dimensional circuits. Although a three-dimensjonal full-
wave analysis is the only rigorous approach to characterize
microstrip circuits and components, it is too laborious and
computer time consuming for most practical purposes.
Planar-circuit analyses, on the contrary, require reasonably
short computer times, while providing descriptions which
are generally accurate enough for the needs of the micro-
strip circuit designer.

IIL

The basic equations for the analysis of N-port planar
circuits are derived in this section. The case of magnetic
wall boundaries is considered, as is usually assumed for
representing a microstrip or stripline component. A termi-
nal description in terms of an impedance matrix can be
derived for this type of planar circuit. The case of electri-
cally conducting boundaries, which is representative for
reduced-height waveguide, can be treated in a similar
manner and described in terms of an admittance matrix
[11].

Fig. 2 shows a schematic of a N-port planar element.
The EM field is confined by two parallel perfectly conduct-
ing plates (top and bottom) bounded by the contour ¥
and, laterally, by a cylindrical magnetic-wall surface. The
excitation of the EM field inside this structure may take
place either through some apertures produced at the lateral
wall to couple the planar element to the external circuit
(edge-fed microstrip) or by some internal current sources
J,. The latter case is normally encountered only in antenna
applications, while the former is the only one usually
considered in MIC applications. Both cases, however, can
be formally treated in the same way; it can be easily
demonstrated, in fact, that the coupling aperture produced
in the magnetic wall is equivalent to an electric-current
density flowing on the aperture surface.

Because of planarity (thus d/dz =0) and open-circuit
boundary conditions, Maxwell’s equations reduce to

PLANAR-CIRCUIT ANALYSIS

vtE‘z = ]wui X Ht

1)
@)

where v, is the two-dimensional nabla operator, £ is the
unit vector normal to the plane of the circuit, u and € are
the permeability and permittivity of the filling substrate
material. The E-field has only the z-component, while the
H-field lies in the xy plane.

A two-dimensional form of telegraphists’ equations can
be obtained from (1) and (2) defining at each point » of the
planar circuit a voltage v and a surface current density J,

Vv, X H,= (jweE, + J,)%
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coupling ports

magnetic
wall

Fig. 2. -Geometry of the planar circuit.

flowing on the top conductor as -
v(r)=—hE, V
J(r)=-2xH,

where 4 is the substrate thickness.
Note that the Poynting vector is given by

(3)

A/m 4)

1 1
e = *
P 2E)(H 2th

so that the quantity

W/ m?

1
P= EUJS*
represents the linear power-density vector flowing on the
planar circuit.
Inserting (3) and (4) into (1) and (2), we get

W/m

(5)
(6)

Vo= — jophl,
Vr'Js= 'h—l)+J

These equations represent a two-dimensional form of

inhomogeneous telegraphists’ equations, involving the volt-
age v and surface current density on the top metallic plate.
The voltage wave equation is obtained taking the diver-
gence of (5) and substituting into (6)

Vit kt=— jouhl, (7
where

k%= wpe.
The boundary condition associated with (7) is
@___{-—jwyh]s'n, i=1,2,---N (8)
on 0, elsewhere on %

w, being the ith port of the planar circuit .and n the
outward directed normal to the periphery %.

It can be demonstrated easily that the inhomogeneous
boundary condition (8) can be replaced by a homogeneous
boundary condition along the whole periphery €, prov1ded
an additional equivalent current density

J,=—J-n8(r—r')

on w,,

)
is assumed in (7), #’ being the source location at w, on the
periphery %.

A formal solution of (7) and (8) for the voltage v can be
obtained using either the resonant-mode expansion tech-
nique [10], [11} or the Green’s function approach [4]. The
two approaches are substantially equivalent, since the
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Green’s function is normally not known in closed form but
is itself expressed in terms of a resonant mode expansion.
In some cases, however, as discussed in Section VII, the
Green’s function approach can provide more compact ana-
Iytical expressions leading to more efficient computer
analyses. On the other hand, however, the resonant-mode
technique provides a deeper physical insight, as it lends
itself to a physical interpretation of the filtering properties
of planar elements and is the basis for the modeling in
terms of equivalent circuits.

The resonant-mode technique for planar structures with
magnetic-wall boundaries can be obtained by suitably
modifying the theory on field expansion in resonant cavi-
ties [12]. Let ¢,(» =1,2, - - - ) be the orthonormalized eigen-
functions of the following eigenvalue problem:

V2, +k2,=0, inS
a9,
o, =0 oné (10)

where S is the planar region bounded by the contour %.
The lowest eigenvalue of (10) is k% =0, corresponding to
the electrostatic mode.

Once the set of eigenfunctions ¢, is known, the solution
of (7) can be expressed as

o0)= T 4 &

where

— jwph
4,= f ,J. dS. (12)
When the planar element is edge fed and no volume
current sources are present inside it, because. of (9), the
integral over the planar surface S reduces to the integral
over the ports at the periphery €, so that (12) reduces to

f”"”2 f/J (—n)dl. (13)

vll

A, =

The solution of (7) for a unit current density pulse &
located at r’ gives the Green’s function in terms of the set
of eigenfunctions

Using (14), the expression (11) for v can be replaced by

G(r, ') = joph Z
v=20

v(r)=fSG(r, r)J.(r') dS (15)
or, when (9) applies
v(r)=Y fG(r,r’)(—n-.L)dl. (16)

1=1""

It -is worth noting that the Green’s function is a
frequency-dependent function, while eigenfunctions ¢, are
not. As a consequence, the frequency dependence of v is
not apparent in (15) while it results in the form of a partial
fraction expansion in (11) and (12).
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1V. TERMINAL DESCRIPTION

From now on we shall assume the planar element to be
edge fed, as in usual microstrip circuit applications.

Voltage and surface currents on the planar circuit are
excited by a linear current density — »n-J, injected through
the various ports. At the ith port, these quantities can be
expressed by their Fourier expansions

it I
v= ¥ V", cos = (17)
m=0 !
—ndy= ¥ OB, cos M (18)
n=0 !

where / is the coordinate along the ith port (0 <1< w,), w,
the port width, 8,, the Neumann delta (8,, =1 for m=0,4,
=2 for m # 0). If the port is terminated by a transmission
line having the same width w,, V(" and J( represent
voltage and longitudinal current density amplitudes of the
mode of nth order, n =0 being the dominant TEM mode.
The voltage v and the current density entering the ith port,
— n-J,, can be thus represented by their Fourier expansion
coefficients ’

(19)

n-J,)cos nl dl.
wl

5= (20)

W,

oy

The above definitions are such that the complex power
entering the circuit through the ith port is given by

P=-1—fE><H*-(——n)dl=l > v (21)
I 2 W 2m=0 l

where we have defined

10 =y J

(22)
as the current entering the ith port associated with the mth
order mode.

Inserting (11) and (13) into (19) and using (18) and (22),
the relationship between voltage and currents is obtained
in terms of the generalized impedance matrix of the planar
circuit :

-] N
ym= % 3% Z,(,m")fj(")
n=0y=1

(23)

where
(m), (n)

Jjephys, s, f 2,8,

2 2
ww, =Kk

(mn)
zimm = (24)

mmwl

(M= [ ¢,cos =l (25)
W, i

Z{"™ gives the mth order voltage at the ith port due to a
unit nth order current injected at the jth port, all other
currents being zero. With this procedure, each physical
port corresponds to an infinite number of electrical ports,
relative to the spatial harmonics of voltage and current. In
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practice, only a few terms of expansions (17) and (18) are
required to represent with good approximation the voltage
and current distributions along the ports. In most cases,
the width w, of the port is much smaller than both the
wavelength and the dimensions of the circuit, so that only
the Oth order terms need to be retained in (17) and (18).
A formally more compact expression for the Z-elements
is obtained using the Green’s function
‘/_3_@_/ dlf G(r,r)cos ml cos nal? dr.
W, w Iy, W

(26)

Expression (24), or (26), forms the basis for the description
of the microwave planar element as an electrical circuit.
Descriptions in terms of a generalized scattering matrix
can be easily obtained through known formulas.

It is worth noting that the frequency dependence of the
Z-parameters is not apparent in (26), as it is incorporated
in the Green’s function. Since coefficients (25) are frequency
independent, on the contrary, the partial fraction expan-
sion (24) explicitly shows the frequency dependence of the
impedance parameters. Expression (24) is therefore useful
to interpret the filtering properties of planar circuits and
lends itself to the evaluation of equivalent-lumped circuits.
These aspects are briefly discussed herein in the case of
two-port (N = 2) planar elements.

As mentioned above, a notable simplification can be
made when, as in many practical circuits, the ports are very
narrow with respect to both the wavelength and the dimen-
sions of the planar element. In such cases, the contribution
of higher order modes (n >1) at the ports can be neglected,
so that voltages and current densities are assumed to be
constant along the ports. For two-port elements, the Z-
matrix reduces to a 2 X2 matrix relating the voltages and
currents of the dominant (Oth order) modes at the two
ports. Omitting for simplicity the indexes m =n=20, (24)
and (25) become

Zl(jmn) =

_ jwh gvigvj

1y 2
W)‘VJC r=0 wv s

5 (27)

g.=[o,d (28)
W,

where we have put k2= wue and k2= w?ue. The above
expressions can be used to obtain a general equivalent-
lumped circuit in the form of a series connection, through
ideal transformers, of anti-resonant LC cells, each cell
corresponding to a resonant mode of the structure. If the
planar element is symmetrical, then |g,;|=]g,, and the
‘equivalent circuit can be put in the form of a symmetrical
lattice network without any use of transformers [13].

For practical applications, only a finite number of cells
are to be included in the equivalent circuit; such a number
depends on the frequency range of interest and on the
approximation required. In a low-frequency approxima-
tion, only the first two resonant modes can be taken into
acgount, i.e., the static mode resonating at zero frequency

]
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and the first higher mode. When the latter is an odd mode,
it can be easily shown that the equivalent circuit has the
same structure as a third-order elliptic filter [14]. On this
basis, low-pass filters with elliptic function responses have
been designed by cascading microstrip rectangular ele-
ments [15].

The physical nature of the transmission zeros occurring
in planar circuits can be easily interpreted on the basis of
(27) [10). It is well known that transmission zeros (s,; = 0)
in two-port networks occur in two cases: a) for Z,; =0 and
b) for Z,, finite and Z;; or Z,, infinite. For planar
elements, the latter case can occur at some specific reso-
nant frequencies of the structure. This type of transmission
zero has been called a modal transmission zero and occurs
when a resonant mode ‘v’ can be excited from one port
(8,1 * 0), but is uncoupled to the other port (g,, = 0). The
former type of transmission zero (Z,; =0), on the con-
trary, is due to the destructive interaction between resonant
modes. While the frequency location of a modal transmis-
sion zero is determined only by the shape and dimensions
of the planar element, the frequency location of an interac-
tion transmission zero can be controlled by varying the
position of the ports [6].

The same distinction between transmission zeros applies
to waveguide circuits and has been used to improve selec-
tivity in cylindrical filters [16]. A liquid-crystal field map-
ping technique for MIC’s [17], [18] can been used to give
perceptible evidence to these results {19].

V. SEGMENTATION OF PLANAR ELEMENTS

Numerical techniques [1], [4], [21], [22], [47], should be
used for the analysis of planar elements with completely
arbitrary shapes. Eigenfunctions ¢, and Green’s function
G, in fact, are known for a limited number of simple
geometrical shapes, such as rectangles, circles, circular sec-
‘tors, rings, and annular sectors, etc. A number of Green’s
functions for such and other simple shapes are listed in [2]
and {20].

The analysis of planar elements, however, can be easily
extended to those geometries which result from the connec-
tion of elementary shapes. This is illustrated in a simple
example. The structure of Fig. 3 can be decomposed into
the cascade of two subelements (Fig. 3(b)) for which the
impedance matrices [Z,] and [Z,] can be computed as
discussed in the previous section. By grouping together
voltages and currents at the connected ports, [Z,] and [Z,]
can be put in the form

[Zo11] [Z42]
[Zya]1Z,2]

[Za][Za:]

[Za] - [Za21] [Za22]

] [Zb]=

(29)

Using the conditions imposed by the cascade connection,
ie.,

[V:z2]=[Vbl] [Ia2]=_[1bl] (30)
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D) T
Fig. 3. Segmentation of planar elements. 2
the Z-matrix of the resulting network is expressed by
_ [Zu] [le]
z1= [[zm] (2]
[Zu] = [Zau]_ [ZaIZ][Yab][Za21]
[Zu] = [Zau][Yab][Zbu]
[Z21] = [Zb21][Yab][Za21]
[222] = [szz]— [Zb21][Yab][Zb12] (31)
where
[Yab]= ([Za22]+[Zb11])_1‘ (32)

Note that, according to the technique described in the
previous section, voltage and current distributions at the
interconnection between the planar elements are expressed
in terms of their Fourier expansions, so that the same
physical port corresponds to different (infinite, in theory)
electrical ports. In practice, voltage and currents are ap-
proximated by truncated Fourier expansions, correspond-
ing to a finite number of electrical ports.

An alternative technique is the segmentation method, in
which, on the contrary, the interconnection is discretized
into a finite number of ports. Voltage and current are
assumed to be constant along each port, which thus corre-
sponds to one electrical port. Voltage and current distribu-
tions along the interconnection are so approximated by
stepped functions. The segmentation method has been
originally formulated in terms of scattering matrix [23], but
can be also implemented with higher computational ef-
ficiency in terms of impedance matrices [24].

The analysis of complicated geometries can be further
extended by the desegmentation method [25], [26]. This
technique can be applied to those geometries which, after
addition of a simple element, can be analyzed by either the
elementary or segmentation methods. In other words, the
desegmentation method applies to geometries resulting from
the subtraction of a simple shape from another geometry
which can be analyzed by segmentation.

VI

As previously mentioned, a microstrip circuit cannot be
considered as a planar circuit but only in an approximate
way. Substantial discrepancies may arise due to the fields
at the edges of the metallization. Nevertheless, an equiv-
alent planar circuit can be used to model the microstrip
circuit. This section will discuss how to define such an
equivalent planar model.

PLANAR MODELS OF MICROSTRIP CIRCUITS
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As is known, the dynamic properties of a uniform micro-
stripline can be calculated using an equivalent planar
waveguide model [27], [28]. This is a waveguide with lateral
magnetic walls, having the same height 4 as the substrate
thickness. The width w, and the permittivity of the filling
dielectric are determined by the conditions that both the
phase velocity and the characteristic impedance be the
same as for the microstripline. As the dominant mode of
the planar waveguide is a TEM mode, the equality of the
phase velocities imposes that the filling dielectric has the
same effective permittivity ¢, of the quasi-TEM mode of
the microstripline, while the condition on the characteristic
impedance imposes that

ZO = noh/(we‘/;e)
where Z, is the characteristic impedance defined for the
microstripline, 1y =y, /€, is the free-space impedance. A
frequency dependence of €, and w, can be, introduced to
account for dispersion on the phase velocity and character-
istic impedance [28].

The planar waveguide model has been found to provide
a good approximation of the cutoff frequencies of higher
order modes of the microstripline. The usefulness of this
model relies on the reduction of an open structure into a
closed one; it therefore substantially simplifies the calcula-
tion of microstrip discontinuities. In some sense, the planar
waveguide is a two-dimensional model, as it takes into
account the transverse variations of the EM field. This
model has found a number of applications from the analy-
sis of the frequency-dependent properties of microstrip
discontinuities [29], [30] to the design of stepped microstrip
components [31], microstrip power dividers [32], and com-
puter-aided design of microstrip filters [33].

It seems reasonable to extend the planar waveguide
model to the case of two-dimensional microstrip circuits
using a planar circuit with effective dimensions and an
effective permittivity. The case of two-dimensional ele-
ments, however, is more complicated, as the EM field is
allowed to vary along two directions. To' illustrate this
point with an example, let us consider the case of a
two-port circular microstrip. Fig. 4(a) shows the experi-
mental frequency behavior of the scattering parameter [s,;.
The theoretical behavior of Fig. 4(b) has been obtained by
applying the mode expansion technique and by suitably
choosing the effective parameters of the circular microstrip
so as to optimize the agreement with Fig. 4(a).

A good agreement between theory and experiment is
observed up to ~12 GHz. Above this frequency, the
theory appears to be inconsistent with the experiment.
Such an inconsistency can be explained by the following
argument.

The effective permittivity is used to account for the
electric-field lines being more or less confined to the sub-
strate material and therefore depends on the electric-field
distribution along the edge of the planar element. Consid-
ering the EM field as the superposition of the resonant
modes of the structure, it is evident that a different effec-
tive permittivity should be ascribed to resonant modes
having a different field distribution along the periphery of
the circuit.
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Fig. 4. Scattering parameter |sy;| of a circular microstrip. (a) Experi-
ment (after [10]). (b) Theoretical analysis using a single effective model.
(¢) Theoretical analysis using a different effective model for each
resonant mode (after [10]).

Wolff and Knoppik have developed a theory [34] for
computing the resonant frequencies of circular and rectan-
gular microstrip resonators using a planar model. The
theory can be extended to ring resonators [35]-[37]. This
model is characterized by effective dimensions and effec-
tive permittivities which depend on the resonant mode; it
can be used in conjunction with the resonant-mode tech-
nique to get the results of Fig. 4(c) [7]. The agreement with
the experiment of Fig. 4(a) is quite good up to 18 GHz.
The comparison between Fig. 4(b) and (c) shows that each
resonant frequency undergoes a different shift; in particu-
lar, the resonant frequencies w,, and w,; are interchanged.
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This example demonstrates that an accurate characteri-
zation of a two-dimensional microstrip circuit can be
achieved through an effective planar-circuit model in con-
junction with the resonant-mode technique, provided a
suitable effective permittivity is used for each resonant
mode. The effective permittivity accounts for the reactive
energy associated with the fringing field of the correspond-
ing mode and may produce modal inversions. Since, as
previously demonstrated, the response of a planar element
is tightly related to the sequence of resonant modes, the
alteration of that sequence produces strong alterations of
the frequency behavior of the circuit.

An additional source of discrepancy may be due to
radiation loss. Differently from dielectric and conductor
losses, which are associated with the field distribution
inside the microstrip element, radiation loss depends on the
field distribution along the periphery of the circuit. Con-
ductor and dielectric losses do not alter substantially the
circuit performance, but usually only introduce some
degradations. On the contrary, radiation loss may produce
effects substantially different from those predicted on the
basis of a lossless theory.

A typical example is represented by nonsymmetrical
structures. For a lossless reciprocal two-port network, |s]
= |5,,] at any frequency; this equality is no longer valid in
the presence of losses. It has been experimentally observed
in nonsymmetrical rectangular microstrips, in fact, that at
some particular frequencies |s;;| =0 while |s,,|=1 [41].
This phenomenon occurs when a resonant mode, which
strongly radiates, can be excited from the first port, but is
uncoupled with the second one.

An exact theory for calculating radiation loss from mi-
crostrip structures has not been developed. The resonant-
mode technique applied to planar circuits, however, can be
extended to include radiation loss in an approximate way.
This technique, in fact, has been extensively applied to the
analysis of microstrip antennas [9], [38]-[40]. Basically, one
has to account for radiation by assuming that the tangen-
tial magnetic field at the periphery of the circuit is different
from zero, so that the field expansion coefficients must be
modified accordingly. The general formulation presented
in [41] is of impractical use; neglecting the coupling be-
tween' resonant modes, which arises from the inhomoge-
neous boundary conditions, a simplified theory can be
derived which reduces the problem to the evaluation of the
complex power radiated by each unperturbed resonant
mode. In spite of the approximations involved, which
include neglecting surface waves, this theory was shown to
accurately predict in a quantitative way the frequency
behavior of the scattering parameters of rectangular and
circular microstrip structures.

VII. PLANAR ANALYSIS OF STUB STRUCTURE

The limitations of the transmission-line (one-dimen-
sional) approach to the analysis and design of MIC’s are
illustrated and discussed in this section, through the simple
but typical and significant example of a stub structure.

The stub is used to provide a zero-impedance level, thus
a transmission zero, at the frequency corresponding to a

1063

S L"' I w

..... r-—-—

1
Fig. 5. Geometry of a double stub.

quarter of wavelength. Low-characteristic impedances of
the stub are required for broad-band applications, so that,
in microstrip circuits, this function is more conveniently
realized as the parallel of two stubs. We are therefore led to
the consideration of the double-stub structure of Fig. 5.
From a planar point of view, this is a rectangular element
b x| symmetrically connected to a main line of width w.
With reference to the discussion of Section VI on fringe
field effects, a different effective model should be used for
each resonant mode of the structure. In order to simplify
the discussion, which is aimed to point out two-dimen-
sional effects arising even in a simplified model indepen-
dently of fringe field effects, this structure will be char-
acterized by a unique effective model, ie., by effective
dimensions w,, b,,/, and effective dielectric constant e,
(This is a planar waveguide model, which is strictly valid as
long as I,>b, and higher order modes excited at the
connection with the main line are rapidly decaying toward
the open ends of the stub structure.)

Depending on the dimensions and the frequency range,
the rectangular structure behaves as: a) a shunt capacitor
C=¢,,b,/h in the limit of very low frequencies, so that
w,, be, . < A; b) a shunt stub of transmission line with
characteristic impedance Z,/2 = (1/2)hn, /(be\/—e ) and
length /,/2 as long as w,, b, < A and w, <</ ; c) a planar
circuit in all other cases.

The general case c¢), which includes a) and b) as special
cases, can be treated as in Section III by evaluating the
generalized impedance matrix, which accounts also for
reflected and transmitted higher order modes on the main
line. If these modes are evanescent and the line is long
enough at both ends so that the discontinuity represented
by the stub does not interact with other possible discon-
tinuities, higher order modes have a negligible effect. In
such a case, the Z-matrix computation can be reduced to
the only terms relative to the dominant modes (m=n=0
in (24)).

Using the resonant-mode technique, the Z-matrix is
expressed in the form of a double series over indexes » and
s corresponding to the resonances along / and b, respec-
tively. More specifically, one obtains

ng
Zy=Zy= J‘*’CZOZ Z
r—Os—Ow w
1 grs
Zyp=Zy= J"-’CZOZ Z( ) (33)
r=0s=0 w
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with
c=1/boe ek,
h
Zy= b_no/\/fi

o, =cy(rn/1,)+(sa/b,)’
60

,0, rTw, ) r

] sinc(—z—le- €os 5.
In the numerical computation of the Z-parameters, it
would be convenient to evaluate analytically the series in
(33). Actually, it could be shown that either the series over
r or that over s can be expressed in a closed form. This can
be done by regarding the rectangular structure as a section
of planar waveguide with its longitudinal axis directed
along either the length / or the width b, respectively. In
both cases, the Green’s function is obtained as a single
series involving the modes of the planar waveguide. It is
found, in particular, that (33)—(34) can be replaced by

[o0) o0
Zy=Zyp=] Z X, Zyp=Zy=j Z (_1)sXs
s=0

Brs = (34)

e

s=0
(35)
with
X, =2,
B 1 lee M B.Ywe lewe— Sin(BSwe)
-73%83[7 cotan< 5 )smcz( 5 )—l— GBon)? }

(36)
B2 = uege, ~ (sm/b,)"

Trigonometric functions in (36) reduce to corresponding
hyperbolic functions when the frequency and the index s
are such that B2 <0. This corresponds to the sth order
mode being below cutoff. Clearly, (35) and (36) are compu-
tationally much more efficient than (33) and (34). Alterna-
tive expressions can be obtained by evaluating analytically
the series over s in (33) [42], [43]. In such a case, the
rectangular structure is viewed as a longitudinally symmet-
ric cascade of two step discontinuities.

Expressions (35) and (36) permit one to point out the
differences between the planar approach and the transmis-
sion-line approach; they reduce to the usual expressions for
the parallel of two shunt open stubs: a) retaining only the
Oth order terms in (35) and b) in the limit for w, /A - 0

lim X, = %cotan(ﬁg—h).

It is worth noting that discrepancies between planar and
transmission-line models arise not only because of the
excitation of higher order modes (s > 0) in the stub struc-
ture, but also because of the finite width w, of the ports.
Even if the stub has a high characteristic impedance, and
higher order modes can therefore be neglected, in fact, the
finite width of the ports produces both a shift of the zero
impedance frequency f, (because of the additive term
appearing in (36)), and a different impedance slope (be-
cause of the coefficient of the cotangent).
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(b)

Fig. 6. (a) Scattéring parameter |s, | of a double stub with Z, =90 &,
fo =12 GHz: ideal response (dashed line); a planar analysis neglecting
higher mode and 5 with higher modes.(b) Same as Fig. 6(a), but with
Z,=30 Q.

These effects are illustrated in Fig. 6(a) and (b). Fig. 6(a)
shows the frequency behavior of the scattering parameter
|s4;] of a double stub with Z;,=90 § inserted on a 50-0
line. The length of the stub has been chosen so that
(I,—w,)=A/2 at the frequency f, =12 GHz. The dotted
curve represents the response obtained by an ideal trans-
mission-line model. Curve a has been computed including
in (35) only the Oth order terms. A notable shift of the
transmission zero frequency is observed because of the
finite width of the 50-& line. The inclusion of higher order
terms in (35), curve (b), gives rise to a further shift of the
frequency f,, which is about 13.7 GHz instead of 12 GHz.

These effects become even more marked if the stub
impedance is reduced. Because of the excitation of higher
order modes, the transmission zero may eventually disap-
pear, as shown in Fig. 6(b), where the double stub imped-
ance has been chosen as 30 Q.

The difficulties of designing microstrip stubs with low-
characteristic impedances have suggested the use of alter-
native structures, such as radial line stubs [44]-[46]. Linear
stubs, however, can still be used, provided a planar ap-
proach is used in the design. This is demonstrated in Fig. 7,
where the response of the planar structure designed is
compared with that of an ideal transmission-line single
stub of 15 Q. Although the rectangular structure exhibits a
somewhat more selective behavior, nevertheless the re-
sponse appears to be satisfactory for practical applications.
This simple example shows the wider design possibilities of
the planar approach, which permits one to overcome the
limitations inherent to the one-dimensional approach.
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f (GHz)

Fig. 7. Behavior of a planar stub designed to have a transmission zero at
fo =12 GHz, compared with the ideal response of a 15-& stub (----.)

VIIIL

An attempt has been made to review the planar-circuit
concept and its theoretical basis for analysis and design of
microwave planar components.

It has been stressed that the planar approach to MIC’s is
an approximate technique and therefore cannot be ex-
pected to provide extremely accurate results in all actual
problems: to this scope, hybrid-mode full-wave techniques
should be used. In conjunction with the planar modeis
discussed in Section VI, however, accurate characteriza-
tions are obtained in most practical cases, including radia-
tion loss, in such a way as to overcome the limitations
inherent to the conventional transmission-line approach in
the analysis and design of MIC’s.

CONCLUSION
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