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Abstract —The planar-circuit approach to the anafysis and design of

microwave integrated circuits (MIC’S), with specific reference to microstrip

circuits, is reviewed. The planar approach overcomes the fimitations inher-

ent to the more eonventionaf transmission-line approach. As the operating

frequency is increased and/or Iow-impedence levels are required, in fact,

the transverse dimensions of the circuit elements become comparable with

the wavelength and/or the longitudinal dimensions. In such cases, one-

dimensionaf analyses give inaccurate or even erroneous results.

The analysis of planar elements is formulated in terms of an N-port

circuit and results in a generalized impedance-matrix description. Analysis

techniques for simple geometries, such as the resonant mode expansion,

and for more complicated planar configurations, such as the segmentation

method, are dkeussed along with planar models for accounting for fringing

fields effects and radiation loss.

I. INTRODUCTION

A S MICROWAVE TECHNOLOGY evolves toward

the use of higher frequencies and more sophisticated

circuits and components, a considerable theoretical effort
is required in order to improve the characterization and

modeling of microwave structures. This is the basis for

reliable computer-aided design (CAD) techniques.

In the setup of CAD techniques, one has to compromise

between accuracy and simplicity. Exact analyses are often

impractical because of the exceedingly high computer time

required. From this viewpoint, the planar-circuit approach

is a very powerful technique, which has been basically

developed for the analysis of microstrip circuits, but can be

extended to other microwave circuit configurations, such as

reduced-height waveguide, stripline, suspended microstrip,

etc.

Though the planar circuit is an approximate model of

microstrip components, it constitutes a substantial im-

provement over conventional transmission-line models,

providing accurate descriptions of their performances. On

the other hand, planar-circuit models are simple enough to

keep computer analyses reasonably inexpensive.

It is the scope of this paper to review the theoretical

basis of the planar-circuit approach and to stress its suit-

ability to the characterization, modeling, and design of

two-dimensional microwave structures, with specific refer-

ence to microstrip circuits. This paper is not intended to

provide details on planar-circuit arxdysis and design, which
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can be found in the referenced papers and ‘overview books

[1]-[3], but to illustrate the main features of the planar

approach in contrast with the more conventional transmis-

sion-line approach.

The concept and definition of planar circuits are intro-

duced in the next section, and the advantages of such an

approach are briefly described. Starting from Maxwell’s

equations, the theoretical bases for the analysis of planar

microwave components in terms of a two-dimensional cir-

cuit model are assessed in Section III. The terminal de-

scription of planar circuit is derived in Section IV; this is

the basis for a brief discussion on the filtering properties

and lumped-element equivalent circuits of planar elements.

Once the terminal description of a single planar element

has been obtained, the techniques mentioned in Section V,

such as the segmentation method, can be applied to the

analysis of more complicated planar configurations. The

techniques for modeling a microstrip component such as a

planar circuit, so as to account for effects of fringe fields

and radiation loss, are discussed in Section VI. Finally, in

order to describe the effects of planarity in microstrip

circuits, a simple stub structure is taken as an example and

its behavior illustrated in some detail in Section VII.

II. THE PLANAR CIRCUIT

The concept of a planar circuit was introduced by Okoshi

and Miyoshi [4] as an approach to the analysis of micro-

wave integrated circuits (MIC’S). Depending on the num-

ber of dimensions which are comparable with the operating

wavelength, conventional circuit elements can be classified

into three categories: zero-dimensional (lumped), one-

dimensional (uniform transmission lines), and three-dimen-

sional (waveguides). The fourth category is represented by

two-dimensional or planar circuits (Fig. 1). A planar circuit

is defined as an electrical circuit having two dimensions

comparable with the wavelength, while the third dimension

is a negligible fraction of the wavelength. Strictly speaking,

a distinction should be made between a microwave planar

element and a planar circuit, the latter being the mathe-

matical model, phrased in terms of voltage and current, of

the former; in some instances throughout this paper, how-

ever, the two terms can be used indistinctly.

As will be shown in the next section, a two-dimensional

circuit theory can be developed for planar components by

extending to the two-dimensional case. the concepts of
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>%~ 0 - DIMENSIONAL V=zl

LUMPED ELEMENT I=YV

1 - DIMENSIONAL d!l/dx = -Zi

TRANSMISSION LINE dlldx = -Yv

Q 2 - DIMENSIONAL v“ = -z,

PLANAR CIRCUIT ‘7? = -Y”

49=3 - OIMEN510NAL vx~ = -,. !JH—

WAVEGU 10E vx~ = ,.. <

Fig 1. Classification of electrical components

voltage and current usually defined in transmission-line

theory.

The planar approach can be used to characterize a

number of ~IC components, basically in stripline or mi-

crostrip configuration, which typically have one dimension,

the substrate thickness, much smaller than the operating
wavelength. Our attention will be focused on microstrip

circuits, which presently play a major role in the area of

M1f2’s.

With reference to a microstrip component, it should be

observed that it can be only approximately considered as a

planar circuit, as the electromagnetic (EM) field is not

entirely confined to the substrate region but, particularly

near the edges of the metallization, extends into air outside

the dielectric substrate. In other words, the presence of-

stray fields makes the planar-circuit concept not rigorously

applicable to microstrip components. Nonetheless, as dis-

cussed in Section V1, provided suitable modifications in

terms of effective parameters are made, planar models

provide accurate enough characterizations of microstrip

circuits and components.

The planar-circuit model is intermediate between trans-

mission-line and full-wave three-dimensional models. In

some respects, it combines advantages of both approaches.

On the one hand, with respect to the usual transmission-line

description of rnicrostrip circuits, the planar description is

far more accurate, while, on the other hand, it is much

more simple and computationally affordable than a full-

wave description.

The advantages associated with the planar-circuit ap-

proach can be summarized as follows.
1) The planar-circuit approach provides accurate de-

scriptions of microstrip components and discontinuities.

As the operating frequency is increased and low-impedance

values are required, the performance of microstrip circuits

designed on a transmission-line basis deteriorates because

of unwanted reactance associated with discontinuities.
The EM field cannot any longer be assumed to have a

uniform distribution in the transverse direction so that a

planar approach is required to obtain accurate characteri-

zations of the circuit performances.

2) New classes of components can be analyzed and

designed using the planar-circuit approach. The wider de-

gree of freedom of planar elements can be used to obtain

specific performances and to overcome the limitation in-

herent to the one-dimensional approach. Several new com-

ponents have been designed which utilize the planar con-

cept, such as 3-dB hybrid circuits [5], bias filter elements

[6], coupled-mode filters [71, in-phase 3-dB power dividers

[8], etc.; circular polarization in microstrip antennas is

obtained exciting two degenerate orthogonal modes in a

planar structure [9].

3) Planar circuits are simpler to analyze than three-

dimensional circuits. Although a three-dimensional full-

wave analysis is the only rigorous approach to characterize

microstrip circuits and components, it is too laborious and

computer time consuming for most practical purposes.

Planar-circuit analyses, on the contrary, require reasonably

short computer times, while providing descriptions which

are generally accurate enough for the needs of the micro-

strip circuit designer.

111. PLANAR-CIRCUIT ANALYSIS

The basic equations for the analysis of ~-port planar

circuits are derived in this section. The case of magnetic

wall boundaries is considered, as is usually assumed for

representing a microstrip or stripline component. A termi~

nal description in terms of an impedance matrix can be

derived for this type of planar circuit. The case of electri-

cally conducting boundaries, which is representative for

reduced-height waveguide, can be treated in a similar

manner and described in terms of an admittance matrix

[11].

Fig. 2 shows a schematic of a ~-port planar element.

The EM field is confined by two parallel perfectly conduct-

ing plates (top and bottom) bounded by the contour %

and, laterally, by a cylindrical magnetic-wall surface. The

excitation of the EM field inside this structure may take

place either through some apertures produced at the lateral

wall to couple the planar element to the external circuit

(edge-fed microstrip) or by some internal current sources

~,. The latter case is normally encountered only in antenna

applications, while the former is the only one usually

considered in MIC applications. Both cases, however, can

be formally treated in the same way; it can be easily

demonstrated, in fact, that the coupling aperture produced

in the magnetic wall is equivalent to an electric-current

density flowing on the aperture surface.

Because of planarity (thus d/dz = O) and open-circuit

boundary conditions, Maxwell’s equations reduce to

V,EZ = – jupi x Ht (1)

v, x H, = ( juE2 + Jz)if (2)

where Vr is the two-dimensional nabla operator, ~ is the

unit vector normal to the plane of the circuit, p and c are

the permeability and permittivity of the filling substrate

material. The E-field has only the z-component, while the

n-field lies in the xy plane.

A two-dimensional form of telegraphists’ equations can

be obtained from (1) and (2) defining at each point r of the

planar circuit a voltage u and a surface current density ~
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coupling ports Green’s function is normally not known in closed form but

1! . n—
f
. is itself expressed in terms of a resonant mode expansion.

hI

.c~
Fig. 2. Geometryof the planar circuit.

flowing on the top conductor as .

v(r) =–hEz v

{(r) =–ixllj A/m

where h is the substrate thickness.

Note that the Poynting vector is given by

so that the quantity

1

‘= Tv~*
W/m

In some cases, however, as discussed in Section ‘VII, the

Green’s function approach can provide more compact ana-

lytical expressions leading to more efficient computer

analyses. On the other hand, however, the resonant-mode

technique provides a deeper physical insight, as it lends

itself to a physical interpretation of the filtering properties

of planar elements and is the basis for the modeling in

terms of equivalent circuits.

The resonant-mode technique for planar structures with

magnetic-wall boundaries can be obtained by suitably

modifying the theory on field expansion in resonant cavi-

(3) ties [12]. Let $V(v =1,2,... ) be the orthonormalized eigen-

(4)
functions of the following eigenvalue problem:

V~@, + k;+, = O, in S

(lo)

where S is the planar region bounded by the contour %.

The lowest eigenvalue of (10) is k:= O, corresponding to

the electrostatic mode.

Once the set of eigenfunctions ~V is known, the solution

of (7) can be exnressed as
represents the linear power-density vector flowing on the ‘ ‘

. .

planar circuit. “u(r)= g Av@, (11)
Inserting (3) and (4) into (1) and (2), we get “=0

Vtv = – japh.1, (5) where

v,. ~=–j~vi-Jz, (6) A,=
- juph

Jkz _ k: )JZ ‘s. (12)

These equations represent a two-dimensional form of

inhomogeneous telegraphists’ equations, involving the volt- When the planar element is edge fed and no volume

age v and surface current density on the top metallic plate.
current sources are present inside it, because. of .(9), the

The voltage wave equation is obtained tal@ng the diver- integral over the planar surface S reduces to the integral

gence of (5) and substituting into (6) over the ports at the periphery %’, so that (12) reduces to

where

V}V + k=v = – juph.lz

k2=u2pe.

The boundary condition associated with (7) is

au

{

– juphJ,. n, on w,, i=l,2, . ..N

xl= 0,
(8)

elsewhere on %

w, being the i th port of the planar circuit and n the

outward directed normal to the periphery %.

It can be demonstrated easily that the inhomogeneous

boundary condition (8) can be replaced by a homogeneous

boundary condition along the whole periphery %, provided

an additional equivalent current density

JZ= – ~-ni$(r -r’) ‘ (9)

is assumed in (7), r’ being the source location at w, on the

periphery %.

A formal solution of (7) and (8) for the voltage v can be

obtained using either the resonant-mode expansion tech-

nique [10], [11] or the Green’s function approach [4]. The

two approaches are substantially equivalent, since the

(7) A,= ~~’~2 ~l~~.(-n) dl. (13)
VI=,

The solution of (7) for a unit current density pulse 8

located at r’ gives the Green’s function in terms of the set

of eigenfunctions

m @V(r) @V(r’)
G(r, r’)= juph ~ (14).

.=O k:–k2

Using (14), the expression (11) for v can be replaced by

v(r) =~G(r, r’)Jz(r’) d!i
s

(15)

or, when (9) applies

v(r)= fi /G(r, r’)(–n. ~)dl. (16)
J=l w,

It. is worth noting that the Green’s function is a

frequency-dependent function, while eigenfunctions $. are

not. As a consequence, the frequqncy dependence of v is

not apparent in (15) while it results in the form of a partial

fraction expansion @ (11) and (12).
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IV. TERMINAL DESCRIPTION

From now on we shall assume the planar element to be

edge fed, as in usual rnicrostrip circuit applications.

Voltage and surface currents on the planar circuit are

excited by a linear current density – n oJ, injected through

the various ports. At the ith port, these quantities can be

expressed by their Fourier expansions

co
m 7Tl

u = ~ q“)~cos -
~=() W1

(17)

(18)

where 1 is the coordinate along the i th port (O <1< Wi), w,

the port width, i3~ the Neumann delta (~~ = 1 for m = O,~~

= 2 for m + O). If the port is terminated by a transmission

line having the same width w,, ~(”) and <(”) represent

voltage and longitudinal current density amplitudes of the

mode of n th order, n = O being the dominant TEM mode.

The voltage u and the current density entering the z’th port,
— n. J,, can be thus represented by their Fourier expansion

coefficients

(19)V(.)=i!ijocosm!dl
I

1
w,

J(.)= ;

1 ;;( )— –n. J$ cos ~ dl. (20)
z ~1 z

The above definitions are such that the complex power

entering the circuit through the i th port is given by

where we have defined

(22)

as the current entering the i th port associated with the m th

order mode.

Inserting (11) and (13) into (19) and using (18) and (22),

the relationship between voltage and currents is obtained

in terms of the generalized impedance matrix of the planar

circuit

where

(25)

Z},rn”) gives the mth order voltage at the ith port due to a

unit n th order aq-rent injected at the j th port, all other

currents being zero. With this procedure, each physical

port corresponds to an infinite number of electrical ports,

relative io the spatial harmonics of voltage and current. In

practice, only a few terms of expansions (17) and (18) are

required to represent with good approximation the voltage

and current distributions along the ports. In most tias~s,

the width w, of the port is much smaller than both the

wavelength and the dimensions of the circuit, so that only

the Oth order terms need to be retained in (17) and (18).

A formally more compact expression for the Z-elements

is obtained using the Green’s function

(26)

Expression (24), or (26), forms the basis for the description

of the microwave planar element as an electrical circuit.

Descriptions in terms of a generalized scattering matrix

can be easily obtained through known formulas.

It is worth noting that the frequency dependence of the

Z-parameters is not apparent “in (26), as it is incorporated

in the Green’s function. Since coefficients (25) are frequency

independent, on the contrary, the partial fraction expan-

sion (24) explicitly shows the frequency dependence of the

impedance parameters. Expression (24) is therefore useful

to interpret the filtering properties of planar circuits and

lends itself to the evaluation of equivalent-lumped circuits.

These aspects are briefly discussed herein in the case of

two-port (~= 2) planar elements.

As mentioned above, a notable simplification can be

made when, as in many practical circuits, the ports are very

narrow with respect to both the wavelength and the dimen-

sions of the planar element. In such cases, the contribution

of higher order modes (n > 1) at the ports can be neglected,

so that voltages and current densities are assumed to be

constant along the ports. For two-port elements, the 2-

matrix reduces to a 2 X 2 matrix relating the voltages and

currents of the dominant (Oth order) modes at the two”

ports. Omitting for simplicity the indexes m = n = O, (24)

and (25) become

“(27)

g., = j A dl (28)
w

where we have put k? = u~pc and k 2 = ti2pc. The above

expressions can be used to obtain a general equivalent-

lumped circuit in the form of a series connection, through

ideal transformers, of anti-resonant LC cells; each cell

corresponding to a resonant mode of the structure. If the

planar element is symmetrical, then Igpll = Ig,z 1, and the

‘equivalent circuit can be put in the form of a symmetrical
lattice network without any use of transformers [13].

For practical applications, only a finite number of cells

are to be included in the equivalent circuit; such a number

depends on the frequency range of interest and on the

approximation required. In a low-frequency approxima-

tion, only the first two resonant modes can be taken into

acgount, i.e., the static mode resonating at zero frequency
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and the first higher mode. When the latter is an odd mode,

it can be easily shown that the equivalent circuit has the

same structure as a third-order elliptic filter [14]. On this

basis, low-pass filters with elliptic function responses have

been designed by cascading microstrip rectangular ele-

ments [15].

The physical nature of the transmission zeros occurring

in planar circuits can be easily interpreted on the basis of

(27) [10]. It is well known that transmission zeros (.s21= O)

in two-port networks occur in two cases: a) for Zzl = O and

b) for 221 finite and 211 or Zzz infinite. For planar

elements, the latter case can occur at some specific reso-

nant frequencies of the structure. This type of transmission

zero has been called a modal transmission zero and occurs

when a resonant mode ‘ v‘ can be excited from one port

(g,l # 0), but is uncoupled to the other port (g., = O). The
former type of transmission zero (Zzl = O), on the con-

trary, is due to the destructive interaction between resonant

modes. While the frequency location of a modal transmis-

sion zero is determined only by the shape and dimensions

of the planar element, the frequency location of an interac-

tion transmission zero can be controlled by varying the

position of the ports [6].

The same distinction between transmission zeros applies

to waveguide circuits and has been used to improve selec-

tivity in cylindrical filters [16]. A liquid-crystal field map-

ping technique for MIC’S [17], [18] can been used to give

perceptible evidence to these results [19].

V. SEGMENTATION OF PLANAR ELEMENTS

Numerical techniques [1], [4], [21], [22], [47], should be

used for the analysis of planar elements with completely

arbitrary shapes. Eigenfunctions Or and Green’s function

G, in fact, are known for a limited number of simple

geometrical shapes, such as rectangles, circles, circular sec-

tors, rings, and annular sectors, etc. A number of Green’s

functions for such and other simple shapes are listed in [2]

and [20].

The analysis of planar elements, however, can be easily

extended to those geometries which result from the connec-

tion of elementary shapes. This is illustrated in a simple

example. The structure of Fig. 3 can be decomposed into

the cascade of two subelements (Fig. 3(b)) for which the

impedance matrices [Za] and [ Z~] can be computed as

discussed in the previous section. By grouping together

voltages and currents at the connected ports, [Z.] and [ Z~]
can be put in the form

[Za] =
[Zall] [Zal,]

[an] [2.221 ‘zJ=[EKdl-
(29)

Using the conditions imposed by the cascade connection,

i.e.,

[V=*]= [Vbl] [1.2]= -[1,,] (30)

q “ ‘q
2

Fig. 3. Segmentation of planar elements.

the Z-matrix of the resulting network is expressed by

[zl,]=[zalJ- [za,2][Yab][za2J

[z,2]=[za,2][Yab] [zb12]

[Z2J = [zb2J[Yab][zd2J

[Z,,] =[z,,,l- [zb,ll[yabl[zbl,l (31)

where

[~.bl=([za221+[zblll)-1. (32)

Note that, according to the technique described in the

previous section, voltage and current distributions at the

interconnection between the planar elements are expressed

in terms of their Fourier expansions, so that the same

physical port corresponds to different (infinite, in theory)

electrical ports. In practice, voltage, and currents are ap-

proximated by truncated Fourier expansions, correspond-

ing to a finite number of electrical ports.

An alternative technique is the segmentation method, in

which, on the contrary, the interconnection is discretized

into a finite number of ports. Voltage and current are

assumed to be constant along each port, which thus corre-

sponds to one electrical port. Voltage and current distribu-

tions along the interconnection are so approximated by

stepped functions. The segmentation method has been

originally formulated in terms of scattering matrix [23], but

can be also implemented with higher computational ef-

ficiency in terms of impedance matrices [24].

The analysis of complicated geometries can be further

extended by the desegmentation method [25], [26]. This

technique can be applied to those geometries which, after

addition of a simple element, can be analyzed by either the

elementary or segmentation methods. In other words, the

desegmentation method applies to geometries resulting from

the subtraction of a simple shape from another geometry

which can be analyzed by segmentation.

VI. PLANAR MODELS OF MICROSTRIP CIRCUITS

As previously mentioned, a microstrip circuit cannot be

considered as a planar circuit but only in an approximate

way. Substantial discrepancies may arise due to the fields

at the edges of the metallization. Nevertheless, an equiv-

alent planar circuit can be used to model the microstrip

circuit. This section will discuss how to define such an

equivalent planar model.
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As is known, the dynamic properties of a uniform micro-

stripline can be calculated using an equivalent planar

waveguide model [27], [28]. This is a waveguide with lateral

magnetic walls, having the same height h as the substrate

thickness. The width w, and the permittivity of the filling

dielectric are determined by the conditions that both the

phase velocity and the characteristic impedance be the

same as for the microstripline. As the dominant mode of

the planar waveguide is a TEM mode, the equality of the

phase velocities imposes that the fillirig dielectric has the

same effective permittivity c, of the quasi-TEM mode of

the microstripline, while the condition on the characteristic

impedance imposes that

Zo = %V’(WL)
where Z. is the characteristic impedance defined for the

microstripline, q. = (m- is the free-space impedance. A

frequency dependence of c, and w, can be. introduced to

account for dispersion on the phase velocity and character-

istic impedance [28].

The planar waveguide model has been found to provide

a good approximation of the cutoff frequencies of higher

order modes of the microstripline. The usefulness of this

model relies on the reduction of an open structure into a

closed one; it therefore substantially simplifies the calcula-

tion of microstrip discontinuities. In some sense, the planar

waveguide is a two-dimensional model, as it takes into

account the transverse variations of the EM field. This

model has found a number of applications from the analy-

sis of the frequency-dependent properties of microstrip

discontinuities [29], [30] to the design of stepped microstrip

components [31], microstrip power dividers [32], and com-

puter-aided design of microstrip filters [33].

It seems reasonable to extend the planar waveguide

model to the case of two-dimensional microstrip circuits

using a planar circuit with effective dimensions and an

effective permittivity. The case of two-dimensional ele-

ments, however, is more complicated, as the EM field is

allowed to vary along two directions. To’ illustrate this

point with an example, let us consider the case of a

two-port circular microstrip. Fig. 4(a) shows the experi-
mental’ frequency behavior of the scattering parameter Iszl 1.

The theoretical behavior of Fig. 4(b) has been obtained by

applying the mode expansion technique and by suitably

choosing the effective parameters of the circular rnicrostrip

so as to optimize the agreement with Fig. 4(a).

A good agreement between theory and experiment is

observed up to -12 GHz. Above this frequency, the

theory appears to be inconsistent with the experiment.

Such an inconsistency can be explained by the following

argument.

The effective permittivity is used to account for the

electric-field lines being more or less confined to the sub-

strate material and therefore depends on the electric-field

distribution along the edge of the planar element. Consid-

ering the EM field as the superposition of the resonant

modes of the structure, it is evident that a different effec-

tive permittivity should be ascribed to resonant modes

having a different field distribution along the periphery of

the circuit.

/s211dB

-lo

-20

-30

.

I I I I

&-

I I I 1 I I I J
2 6 10 14 18

f(GHz)

(a)

~.,, ~.21

ls211dB

-10

-20

-“---’o~
~

18
f(GHz)

(b)

~
2 14 18

f(GHz)

(c)

Fig. 4. Scattering parameter ls21I of a circular rnicrostnp. (a) Experi-
ment (after [10]). (b) Theoretical analysis using a single effective model.

(c) Theoretical analysis using a different effective model for each
resonant mode (after [10]).

Wolff and Knoppik have developed a theory [34] for

computing the resonant frequencies of circular and rectan-

gular microstrip resonators using a planar model. The

theory can be extended to ring resonators [35]–[37]. This

model is characterized by effective dimensions and effec-

tive permittivities which depend on the resonant mode; it

can be used in conjunction with the resonant-mode tech-

nique to get the results of Fig. 4(c) [7]. The agreement with

the experiment of Fig. 4(a) is quite good up to 18 GHz.

The comparison between Fig. 4(b) and (c) shows that each

resonant frequency undergoes a different shift; in particu-

lar, the resonant frequencies ald and azl are interchanged.
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This example demonstrates that an accurate characteri-

zation of a two-dimensional microstrip circuit can be

achieved through an effective planar-circuit model in con-

junction with the resonant-mode technique, provided a

suitable effective permittivit y is used for each resonant

mode. The effective permittivity accounts for the reactive

energy associated with the fringing field of the correspond-

ing mode and may produce modal inversions. Since, as

previously demonstrated, the response of a planar element

is tightly related to the sequence of resonant modes, the

alteration of that sequence produces strong alterations of

the frequency behavior of the circuit.

An additional source of discrepancy may be due to

radiation loss. Differently from dielectric and conductor

losses, which are associated with the field distribution

inside the microstrip element, radiation loss depends on the

field distribution along the periphery of the circuit. Con-

ductor and dielectric losses do not alter substantially the

circuit performance, but usually only introduce some

degradations. On the contrary, radiation loss may produce

effects substantially different from those predicted on the

basis of a lossless theory.

A typical example is represented by nonsymmetrical

structures. For a lossless reciprocal two-port network, l,sll/

= 1.s221at any frequency; this equality is no longer valid in

the presence of losses. It has been experimentally observed

in nonsymmetrical rectangular microstrips, in fact, that at

some particular frequencies Islll s O while IS221s 1 [41].

This phenomenon occurs when a resonant mode, which

strongly radiates, can be excited from the first port, but is

uncoupled with the second one.

An exact theory for calculating radiation loss from rni-

crostrip structures has not been developed. The resonant-

mode technique applied to planar circuits, however, can be

extended to include radiation loss in an approximate way.

This technique, in fact, has been extensively applied to the

analysis of microstrip antennas [9], [38]–[40]. Basically, one

has to account for radiation by assuming that the tangen-

tial magnetic field at the periphery of the circuit is different

from zero, so that the field expansion coefficients must be

modified accordingly. The general formulation presented

in [41] is of impractical use; neglecting the coupling be-

tween’ resonant modes, which arises from the inhomoge-

neous boundary conditions, a simplified theory can be

derived which reduces the problem to the evaluation of the

complex power radiated by each unperturbed resonant

mode. In spite of the approximations involved, which

include neglecting surface waves, this theory was shown to

accurately predict in a quantitative way the frequency

behavior of the scattering parameters of rectangular and

circular microstrip structures.

VII. PLANAR ANALYSIS OF STUB STRUCTURE

The limitations of the transmission-line (one-dimen-

sional) approa~h to the analysis and design of MIC’S are

illustrated and discussed in this section, through the simple

but typical and significant example of a stub structure.

The stub is used to provide a zero-impedance level, thus

a transmission zero, at the frequency corresponding to a

b

I -1

m
1 I ‘---’ L---

T.

ml
--------i

Fig. 5. Geomet~ of a double stub.

quarter of wavelength. Low-characteristic impedances of

the stub are required for broad-band applications, so that,

in microstrip circuits, this function is more conveniently

realized as the parallel of two stubs. We are therefore led to

the consideration of the double-stub structure of Fig. 5.

From a planar point of view, this is a rectangular element

b x 1 symmetrically connected to a main line of width w.

With reference to the discussion of Section VI on fringe

field effects, a different effective model should be used for

each resonant mode of the structure. In order to simplify

the discussion, which is aimed to point out two-dimen-

sional effects arising even in a simplified model indepen-

dently of fringe field effects, this structure will be char-

acterized by a unique effective model, i.e., by effective

dimensions w., be, /e and effective dielectric constant c,.
(This is a planar waveguide model, which is strictly valid as

long as 1, > b, and higher order modes excited at the

connection with the main line are rapidly decaying toward

the open ends of the stub structure.)

Depending on the dimensions and the frequency range,

the rectangular structure behaves as: a) a shunt capacitor

C = cJebe/h in the limit of very low frequencies, so that

w,, b,, 1, << A; b) a shunt stub of transmission line with

characteristic impedance 20/2 = (1/2)hq0 /(b@&) and

length le/2 as long as w,, b, << A and w,<< 1,; c) a planar

circuit in all other cases.

The general case c), which includes a) and b) as special

cases, can be treated as in Section III by evaluating the

generalized impedance matrix, which accounts also for

reflected and transmitted higher order modes on the main

line. If these modes are evanescent and the line is long

enough at both ends so that the discontinuity represented

by the stub does not interact with other possible discon-

tinuities, higher order modes have a negligible effect. In

such a case, the Z-matrix computation can be reduced to

the only terms relative to the dominant modes (m = n = O

in (24)).

Using the resonant-mode technique, the Z-matrix is

expressed in the form of a double series over indexes r and

s corresponding to the resonances along 1 and b, respec-

tively. More specifically, one obtains
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with

(J rs {
= c (r7r/le)2+ (,wr/b=)2

.rs=&i..(y)..s;. (34)

In the numerical computation of the Z-parameters, it

would be convenient to evaluate analytically the series in

(33). Actually, it could be shown that either the series over

r or that overs can be expressed in a closed form. This can

be done by regarding the rectangular structure as a section

of planar waveguide with its longitudinal axis directed

along either the length 1 or the width b, respectively. In

both cases, the Green’s function is obtained as a single

series involving the modes of the planar waveguide. It is

found, in particular, that (33)-(34) can be replaced by

Zl, =z,, =jf x. z12=z2, =j: (–l)sx$
S=() ~=o

(35)

with

X,=–z.

Trigonometric functions in (36) reduce to corresponding

hyperbolic functions when the frequency and the index s

are such that ~,2 <0. This corresponds to the s th order

mode being below cutoff. Clearly, (35) and (36) are compu-

tationally much more efficient than (33) and (34). Alterna-

tive expressions can be obtained by evaluating analytically

the series over s in (33) [42], [43]. In such a case, the

rectangular structure is viewed as a longitudinally symmet-

ric cascade of two step discontinuities.

Expressions (35) and (36) permit one to point out the

differences between the planar approach and the transmiss-

ion-line approach; they reduce to the usual expressions for

the parallel of two shunt open stubs: a) retaining only the

Oth order terms in (35) and b) in the limit for w,/A + O

flole

( )lim X. = * cotan ~ .
. .

It is worth noting that discrepancies between planar and

transmission-line models arise not only because of the

excitation of higher order modes (s > O) in the stub struc-

ture, but also because of the finite width w, of the ports.

Even if the stub has a high characteristic impedance, and

higher order modes can therefore be neglected, in fact, the

finite width of the ports produces both a shift of the zero

impedance frequency ~0 (because of the additive term

appearing in (36)), and a different impedance slope (be-

cause of the coefficient of the cotangent).
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Fig. 6. (a) Scatt%ng parameter Iszl I of a double stub with Z.= 90 !2,
~0 = 12 GHz: ideaf response (dashed line); a planar analysis neglecting

higher mode and b with higher modes.(b) Same as Fig. 6(a), but with

Z. =30 Q.

These effects are illustrated in Fig. 6(a) and (b). Fig. 6(a)

shows the frequency behavior of the scattering parameter

IS211of a double stub with Z.= 90 Q inserted on a 50-0

line. The length of the stub has been chosen so that

(1. – w,)= A/2 at the frequency ~. = 12 GHz. The dotted

curve represents the response obtained by an ideal trans-

mission-line model. Curve a has been computed including

in (35) only the Oth order terms. A notable shift of the

transmission zero frequency is observed because of the

finite width of the 50-Q line. The inclusion of higher order

terms in (35), curve (b), gives rise to a further shift of the
frequency $., which is about 13.7 GHz instead of 12 GHz.

These effects become even more marked if the stub

impedance is reduced. Because of the excitation of higher

order modes, the transmission zero may eventually disap-

pear, as shown in Fig. 6(b), where the double stub imped-

ance has been chosen as 30 fl.
The difficulties of designing rnicrostrip stubs with low-

characteristic impedances have suggested the use of aher-

native structures, such as radial line stubs [44]–[46]. Linear

stubs, however, can still be used, provided a planar ap-

proach is used in the design. This is demonstrated in Fig. 7,

where the response of the planar structure designed is

compared with that of an ideal transmission-line single

stub of 15 S?.Although the rectangular structure exhibits a

somewhat more selective behavior, nevertheless the re-

sponse appears to be satisfactory for practical applications.

This simple example shows the wider design possibilities of

the planar approach, which permits one to overcome the

limitations inherent to the one-dimensional approach.
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Fig. 7. Behavior of a planar stub designed to have a transmission zero at
~.= 12 GHz, compared with the ideaJ response of a 15-Q stub (----.)

VIII. CONCLUSION

An attempt has been made to review the planar-circuit

concept and its theoretical basis for analysis and design of

microwave planar components.

It has been stressed that the planar approach to MIC’S is

an approximate technique and therefore cannot be ex-

pected to provide extremely accurate results in all actual

problems: to this scope, hybrid-mode full-wave techniques

should be used. In conjunction with the planar models

discussed in Section VI, however, accurate characteriza-

tions are obtained in most practical cases, including radia-

tion loss, in such a way as to overcome the limitations

inherent to the conventional transmission-line approach in

the analysis and design of MIC’S.
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